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Abstract. We have investigated the lattice parameters, bond lengths, and band-gap energies of
ordered and random AlxGa1−xN alloys of wurtzite-phase AlN and GaN, using density-functional
local-orbital theory based on the local-density approximation and the pseudopotential method. The
lattice constantsa andc are found to change nearly linearly withx for all structures. However,
the Ga–N and Al–N bond lengths exhibit significantly smaller variations, which is in agreement
with the data from recent x-ray absorption fine-structure measurements. The alloys are direct-gap
semiconductors for all Al fractionsx. The alloy structures investigated exhibit a small downward
bowing of the band-gap energy. The bowing is substantially reduced by optimizing the lattice
parameters. For ordered alloys, the band-gap energies are found to show a nearly linear variation
with the Al fraction.

1. Introduction

In semiconductor technology, group-III nitrides are promising materials which are attracting
increasing attention due to the steady improvement of the quality and homogeneity of their
films. Alloys of AlN and GaN are of particular importance. Because of the large difference
between the electronic band-gap energies of the two materials, optoelectronic devices can be
designed that cover a wide spectral range from the visible to the ultraviolet. Typically, thin
group-III nitride films are grown in the more stable wurtzite phase, using hexagonal surfaces
of sapphire and 6H-SiC as substrates for molecular beam epitaxy (MBE) or metal–organic
chemical vapour deposition (MOCVD).

Numerous experiments have been performed to explore the structural and electronic
properties of thin wurtzite-phase GaN and AlN films and their alloys. The lattice constants of
Al xGa1−xN are found to vary nearly linearly with the Al fractionx [1–5]. The individual Ga–N
and Al–N bond lengths, however, change only to a small extent with composition and therefore
remain close to the nearest-neighbour distances of the pure materials. This behaviour, which
was revealed for AlxGa1−xN by recent x-ray absorption fine-structure (EXAFS) measurements
[6], is common for III–V alloys such as Gax In1−xAs [7] and Gax In1−xP [8]. As pointed out in
reference [8], the remaining slight variations of the bond lengths are smaller for ordered alloys
than for their random counterparts.

Ordering may also influence the electronic band-gap energy. On the basis of linear
augmented-plane-wave calculations, an ordering-induced band-gap narrowing was found for
many III–V pseudobinary alloys [9]. For thin wurtzite-phase AlxGa1−xN films, optical
absorption measurements [1, 3, 4] revealed a nearly linear variation of the band-gap energy
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with the alloy composition. Bowing was found to be negligible in reference [1], while small
deviations from a linear behaviour were found in references [3] and [4].

Up to now, only a few theoretical studies have focused on determining the structural and
electronic properties of AlxGa1−xN alloys [10–15]. Most of these calculations were carried out
for alloys with zinc-blende structure. Some of them have relaxed the unit-cell volume [10–12]
and the internal degrees of freedom [10, 11]. In contrast, the atomic positions and the lattice
constants were chosen according to the virtual-crystal approximation (VCA) in references [13]
and [14]. To model random alloys, a cluster expansion method was used in references [11]
and [12], while the investigations of reference [10] used special quasi-random structures.
Supercells with eight Ga and eight Al atoms randomly placed at the cation sites were used in
the studies of reference [15]. In reference [13], alloys with zinc-blende and wurtzite symmetry
were investigated. The computations of references [10–15] confirm that the lattice constants
vary nearly linearly with the alloy composition and yield a small downward bowing of the
electronic band-gap energy. As discussed in reference [16] for GaPN and GaAsN alloys, it is
important to account for the influence of ordering versus disordering, as well as effects related
to bond-length relaxations and non-linearities of the lattice constants. This has not yet been
analysed in full detail for the AlxGa1−xN alloys.

In this paper, we present the results of a comprehensive theoretical study of the atomic
structure and electronic properties of wurtzite-phase AlxGa1−xN alloys. We perform density-
functional local-orbital calculations for ordered and random alloys, covering the complete
range from zero to one for the Al fractionx. The lattice parameters and the individual Al–N
and Ga–N bond lengths are determined by minimizing the total energy with respect to the
dimensions of the unit cell, including a relaxation of all internal degrees of freedom. Vegard’s
law is found to be valid for all systems studied, with only small deviations. The Al–N and
Ga–N bond lengths differ only slightly from the respective values in the pure bulk materials;
the smallest changes are realized in ordered structures. Our results are in good agreement with
the recent EXAFS experiments. We compare the electronic band structure of random alloys
and ordered structures. The direct band gap shows a small downward bowing for random
alloys and for incompletely optimized ordered structures. Ordered alloys for which all degrees
of freedom are relaxed, including the dimensions of the unit cell, give a nearly linear variation
of the band-gap energy.

2. Theoretical method

Our calculations are carried out by means of a multicentre local-orbital formalism [17–20],
which is based on density-functional theory in the local-density approximation [21–24] and the
use of norm-conserving pseudopotentials [25]. The electronic wave functions are represented
by a superposition of pseudo-atomic orbitals (PAO) comprising the valence electron s and p
orbitals for N, Al, and Ga. The Ga 3d state is not included in our minimal-basis local-orbital
formalism. The valence charge density is approximated by

nin(r) =
∑
i

ni |φi(r −Ri )|2 (1)

which is used as the input charge density for the Harris functional approach [26] applied
to compute the total energy [17]. The occupation numbersni of the PAOsφi(r − Ri ) are
determined in a self-consistent fashion as described in reference [19].

The PAOs are constructed self-consistently under the boundary condition that the PAOs
vanish beyond a specified cut-off radiusrc. Confined atomic orbitals significantly improve
the accuracy of the Harris functional, since they simulate the contraction of the atomic charge
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Table 1. The lattice constantsa andc, internal parameteru, bulk modulusB0, and band-gap energy
Egap of wurtzite-phase GaN and AlN.

Wurtzite GaN Wurtzite AlN

Present Present
Work Experiment Work Experiment

a (Å) 3.115 3.190a 3.031 3.110a

c (Å) 5.076 5.189a 4.896 4.980a

c/a 1.629 1.627a 1.615 1.601a

u 0.377 0.377a 0.381 0.382a

B0 (Mbar) 1.57 — 2.43 2.02b

Egap (eV) 4.83 3.39c 7.61 6.20c

a Experimental data from reference [28].
b Experimental data from reference [29].
c Experimental data from reference [2].

density observed in solid-state systems [27]. We userc = 5.4 (atomic units) for gallium,
rc = 5.4 for aluminium, andrc = 3.8 for nitrogen, to compute all interaction terms and overlap
integrals. The only deviation from using these values is that we compute the Coulomb integrals
in the electron double-counting correctionUee (see reference [17]) using less confined PAOs
for gallium (rCoul

c = 5.75), aluminium (rCoul
c = 5.9), and nitrogen (rCoul

c = 3.95). Table 1
summarizes the lattice parameters and bulk moduli obtained with our choice of radii and
compares the results with experimental data. Our calculations give the same underestimation
of about 2% for the lattice parametersa andc of GaN and AlN. The computed electronic
band-gap energies for GaN and AlN are 4.83 and 7.61 eV. These values are about 1.4 eV
larger than the band-gap energies 3.39 and 6.20 eV measured for the two materials [2]. The
overestimation results from the small number of orbitals used to represent the electronic wave
functions in our calculations [30].

As demonstrated by computations carried out within the full-potential linear muffin-tin
orbitals method or the plane-wave pseudopotential approach [31, 32], the Ga 3d electrons
should be included in order to obtain correct results for the electronic properties and the bonding
structure. The studies of reference [31] show that the N 2s-derived valence bands hybridize
substantially with the Ga 3d bands. However, the top valence band, which is dominated by
the N 2p states, is essentially not influenced by the Ga 3d electrons. Therefore, the dispersion
of the highest valence band and the lowest conduction band can be computed with our method
in accord with the results of the previous investigations, although the Ga 3d electrons are
not treated explicitly as valence states. We have checked this by comparing the electronic
dispersion computed for zinc-blende phase GaN with the findings of reference [31]. The
agreement also follows from the fact that the lattice parameters calculated by us for GaN
and AlN are close to the respective experimental data. This was achieved in our method by
determining the Coulomb integrals in the electron double-counting correction with slightly
less confined PAOs, which basically mimics an increase of interatomic repulsion as caused,
for instance, by the presence of semi-core states.

3. Alloy structures investigated

Our computations for ordered and random alloys are carried out using a 2× 2× 2 supercell
which has twice the size of the primitive wurtzite unit cell in both directions of the basal
plane and along thec-axis. Although the size of the supercell is relatively small, our results
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computed for random alloys appear to be sufficiently converged, in agreement with the findings
of reference [15]. Brillouin zone integrals are approximated by sampling at nine specialk-
points which correspond to a 6× 6× 4 mesh. We only use time-reversal symmetry to reduce
the number of points in thek-point mesh. With this, we are able to relax all atomic degrees
of freedom without symmetry constraints. The 16 cation lattice sites per unit cell allow us to
investigate AlxGa1−xN alloys with the Al fractionx being an integer multiple of 1/16. X-ray
measurements [1–5] have found that Vegard’s law holds with only small deviations. Hence
the dimensions of the supercell may be chosen as the average values

aVCA = 2[xaAlN + (1− x)aGaN] (2)

atom
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Figure 1. Top and side views of the ordered AlxGa1−xN alloys studied forx = 0.25, 0.5, and
0.75. The superstructure index(n1 × n2 × n3) for each configuration is given with respect to the
primitive translationsa1,VCA, a2,VCA, andcVCA of the VCA crystal. The solid lines in the top
view illustrate the unit cells used in our calculations. To obtain the ordered structure forx = 0.75,
all Ga and Al atoms of the L1 configuration are exchanged with their counterparts.
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and

cVCA = 2[xcAlN + (1− x)cGaN]. (3)

All atoms in the supercell are relaxed with respect to the Hellmann–Feynman forces. To
estimate the deviations from Vegard’s law, optimal values fora andc that minimize the total
energy are determined for some of the alloy structures.

To describe random alloys for a given fractionx = n/16, we occupy the 16 cation sublattice
positions in the supercell arbitrarily withn Al atoms and 16− n Ga atoms. Out of the

(16
n

)
possible configurations, we randomly choose three arrangements. To check possible effects
caused by the limited randomness and the limited size of the 2×2×2 cell, additional random
configurations and larger supercells would have to be considered. Already for a 2× 2× 2
supercell, however, quantities such as the average of the nearest-neighbour bond lengths show
only a very small dependence on the particular random configuration selected for the alloy.
This indicates that the randomness of disordered alloys and their bonding properties can be
described well enough by the chosen random configurations and the size of the supercell. In a
calculation of the electronic band-gap energy, a similar conclusion was found in reference [15].

In addition to random alloys, we have also considered ordered superstructures. Figure 1
illustrates the atomic structure of the three ordered alloys that we consider forx = 0.25,
x = 0.5, andx = 0.75. The top view of one pair of cation layers A and B already gives a
complete representation of the atomic structure of the ordered alloys investigated here. For the
Al fraction x = 0.5, we consider the structures CH and CA which are pictured in the upper
part of figure 1. The structure L1 studied forx = 0.25 can be obtained from the configuration
CA by replacing every other Al atom by one Ga atom. Forx = 0.75 we use the L2 geometry,
which is derived from L1 by exchanging all group-III atoms with their respective counterparts.
The structures CA, CH, L1, and L2 are the wurtzite-phase analogues of the respective zinc-
blende-phase geometries CA, CH, L1, and L2 illustrated in figure 2 of reference [33].

4. Results

The lattice constants of a III–V pseudobinary alloy are usually close to the composition average
of the lattice parameters of the end-point materials which form the alloy. As can be seen from
table 1, our calculated lattice constantsa andc of AlN are smaller than those of GaN by 2.7 and
3.5%. X-ray measurements give differences of 2.5 and 4.0% [28]. Numerous experiments show
that the lattice parametersa andc of the wurtzite-phase AlxGa1−xN alloys essentially obey
Vegard’s law with only small deviations [1–3]. To estimate the magnitude of the deviations, we
optimize the lattice parameters for some of the alloy structures described in section 3. Optimal
values fora andc are found by computing total energies on a 4× 4 grid of 16 points which is
given by all combinations ofa/aVCA andc/cVCA chosen from the values

a/aVCA, c/cVCA ∈ {0.985, 0.995, 1.005, 1.015}. (4)

For each given pair (a, c) on the grid, the internal degrees of freedom in the unit cell are
relaxed with respect to the Hellmann–Feynman forces. By fitting the 16 total-energy values to
a cubic equation in the cell volumeV and the ratioc/a, in analogy to reference [34], we find
the equilibrium values for the lattice parametersa andc. Figure 2 illustrates the total energies
computed for the ordered alloy structures CH and CA. The energy of the CH configuration
is minimal fora = 0.996aVCA andc = 0.999cVCA, while the optimal lattice parameters for
the CA structure area = 0.998aVCA and c = 0.999cVCA. Hence, the lattice parameters
essentially follow Vegard’s law. The same result holds for the structures L1 and L2, as well as
for the one arbitrarily selected random alloy configuration which we have chosen for the lattice
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Figure 2. Total energies of the ordered alloy structures CH (left) and CA (right) as functions of
the lattice parametersa andc. The contour step is 1.45 meV for the CH structure and 1.5 meV for
the CA configuration.
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as well as for the ordered structures CH, CA, L1, and L2. The solid lines correspond to the
virtual-crystal approximation (VCA), while the broken curves indicate the slight bowing.

parameter optimization. A comparison of our results for these structures is given in figure 3.
In each case, the lattice parameters leading to the lowest total energy are close to the respective
VCA values. In particular, the hexagonal-axis lattice constantc varies essentially linearly
with the alloy composition, in agreement with the x-ray measurements of references [1–3].
The in-plane lattice constanta shows a small downward bowing. As discussed in more detail
below, the average bond lengths computed for various random sets of a given Al fraction
are essentially independent on the particular choice of the respective random structure. This
indicates that the deviation from Vegard’s law observed for the arbitrarily chosen disordered
structure can be expected to be similar for all random alloy configurations.

The change of the lattice constants with the Al fractionx originates in small variations
of the individual Ga–N and Al–N bond lengths and, to a significant degree, in bond-angle
distortions. To determine the extent to which the nearest-neighbour distances decrease as a
function of the composition indexx, we perform a large number of calculations for ordered
and random alloys covering the entire range 06 x 6 1. In this part of our investigation, the
dimensions of the unit cells are chosen according to Vegard’s law for all alloy structures. The
average of the Ga–N and Al–N nearest-neighbour distances is determined by sampling over
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Figure 4. Variations of the averaged Ga–N and Al–N bond lengths in AlxGa1−xN as functions of
the alloy composition. Open circles illustrate the results computed for random alloys, while filled
circles represent our results for ordered alloys. The structures CH, CA, L1, and L2 are pictured in
figure 1.

all respective bonds in the unit cell after relaxing the atoms into their zero-force positions. To
describe random alloys, three arbitrarily selected configurations are used for each given Al
fractionx. The average bond lengths computed for the three individual random arrangements
differ by less than 0.003 Å and therefore nearly coincide with their mean value which is used to
represent the respective quantity of the random alloy. As can be seen from figure 4, the Ga–N
and Al–N bond lengths vary by a considerably smaller amount than predicted by the VCA.
As a result, the nearest-neighbour Ga–N distances are substantially larger than the Al–N bond
lengths in AlxGa1−xN, for each Al fraction. For disordered alloys, the Ga–N and Al–N bond
lengths exhibit essentially a linear variation withx. The deviations from the linear behaviour
are also negligible for each individual random configuration selected in our computations.
Effects stemming from the restriction to the small size of our supercell and the limited degree
of randomness are not evident.

The two dissimilar bond lengths in the alloys can be accommodated by bond-angle
distortions, related to the fact that bond-bending force constants are usually smaller than
bond-stretching force constants. Hence, the strain energy in the alloys can be minimized
by reducing the variation of each individual bond length at the expense of larger bond-angle
deformations. In contrast with random configurations, changes of the bond angles occur in
a coherent fashion in ordered structures. Therefore, the nearest-neighbour bond lengths vary
by a smaller degree with respect to the corresponding values of the pure end-point materials
in ordered alloys than in random alloys. This is consistent with the results of computations
performed for Gax In1−xP [8].

Our data for the ordered alloys give the best agreement with the findings of recent
EXAFS measurements [6], in which the change of the Ga–N bond lengths was resolved for
0 6 x 6 0.45. By fitting the values computed for the ordered alloys to a linear equation,
we obtain a slope of−0.017 Å, which is indicated by the dashed line in figure 5(b). For the
experimental data, excluding the point atx ≈ 0.45, we obtain a linear decrease withx of
slope−0.015 Å, shown by the dashed line in figure 5(a). The error bars were not included
in our fitting procedure. The good agreement suggests that ordering is present to some extent
in the alloy films studied by EXAFS. However, no signs of the formation of ordered alloys
were reported in reference [6]. Additional evidence for ordering is provided by the findings of
a recent x-ray diffraction experiment in which long-range order was unambiguously detected
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Figure 5. The variation of the Ga–N bond length in AlxGa1−xN as a function of the alloy compos-
ition. (a) Experimental data from reference [6]. The solid line represents the result from a linear
fit to all data points, while the Ga–N bond length determined forx ≈ 0.45 was excluded in the
fit yielding the dashed line. The slopes of the solid and dashed lines are−0.013 and−0.015 Å.
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indicated by the dotted and dashed lines. The slope predicted by the VCA is−0.056 Å for both
figures. The structures CH, CA, L1, and L2 are illustrated in figure 1.

for MBE-grown AlxGa1−xN films [35].
In contrast with the Ga–N and Al–N bond lengths, the average of the second-neighbour

cation–cation distances varies to the same extent as the lattice constants. This is clearly seen
in figure 6, which compares the respective results from the EXAFS measurements with those
of our computations. The large variation of the Ga–Ga, Ga–Al, and also the Al–Al distances
shows that the dimensions of the cation sublattice (and of the anion sublattice) closely follow
Vegard’s law. In particular, the standard deviation of the individual cation–cation distances
from their mean value is very small. For the ordered alloys CA and CH, the standard deviation
of the Ga–Ga distances is 0.006 Å, while the respective value determined for random alloys
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Figure 6. The variation of the averaged Ga–Ga (dots) and Ga–Al (triangles) second-neighbour
distances in AlxGa1−xN, as a function of the alloy composition. (a) Experimental data from
EXAFS [6]. The larger error bars for eachx apply to the Ga–Al distances. (b) Calculated second-
neighbour distances for ordered and random alloys.
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with x = 0.5 is 0.008 Å. The standard deviation of the N–N distances in the corresponding
anion sublattices is much larger. We obtain 0.035 Å for the ordered structures and 0.032 Å
for the random alloys withx = 0.5. This means that the cation positions are close to their
ideal positions in the VCA sublattice, while the nitrogen atoms in the anion sublattice exhibit
large relaxations. As illustrated in figures 4 and 5, such relaxations change the individual
cation–anion bond lengths only to a limited extent. The relaxations in the anion sublattice are
mainly supported by bond-angle distortions.

The change of the Al–N and Ga–N bond lengths with respect to the values of the end-
point materials is particularly small in ordered alloys, where bond-angle variations can be
realized in a coherent fashion. This was checked by calculating the distribution of the cation–
nitrogen–cation bond angles for each of the alloy structures investigated. Random alloys
are characterized by a broad distribution, while in ordered alloys only a small number of
characteristic bond angles occur. In the ordered alloy CA, three different Ga–N–Ga bond
angles are present, namely 108.5◦, 109.1◦, and 110.8◦. The respective values for Al–N–Al
are 108.0◦, 109.3◦, and 111.7◦. Five different angles are found in the ordered structure CH.
In the structures L1 and L2, only two different angles occur for Ga–N–Ga and Al–N–Al. The
number of different angles obtained for random alloys, however, is much larger. In the broad
distribution of Ga–N–Ga bond angles computed atx = 0.5, there are two main peaks at 109.1◦

and 110.7◦. The respective values found for the Al–N–Al bond angles are 109.4◦ and 111.0◦.
Wurtzite-phase GaN and AlN are direct-band-gap semiconductors with measured gap

energies of 3.39 and 6.20 eV, respectively [2]. Our computations yield 4.83 and 7.61 eV
for GaN and AlN. Hence, the experimental data are overestimated by approximately the
same amount of∼1.4 eV for each of the two end-point materials. Because of this, we are
able to reliably calculate the variation of the electronic band-gap energy as a function of the
composition. We find good agreement with experimental data. Figure 7(b) summarizes our
results for random and ordered alloys. By using the VCA values for the lattice parametersa

andc, we obtain a small downward bowing of the band-gap energies, as illustrated by the filled
and open circles. The dashed curve was determined by fitting the data points computed for
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Figure 7. The electronic band-gap energy of AlxGa1−xN as a function of the alloy composition.
(a) Experimental results from optical measurements are taken from reference [1] (squares),
reference [3] (open circles), and reference [5] (triangles). The dashed curves illustrate a bowing
of ±1.0 eV. (b) Computed band-gap energies for random alloys (open circles) and ordered alloys
calculated with the VCA values for the lattice constantsa andc (filled circles) and the optimized
values fora andc (squares). The data represented by the filled circles give a bowing of 0.56 eV, as
indicated by the dashed curve.
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the ordered alloys to a quadratic equation, which gave a bowing of 0.56x(1− x) eV. Since the
optimal lattice parametersa andc are slightly smaller than those predicted by Vegard’s law,
the downward bowing is reduced ifa andc are chosen according to figure 3. This correction
leads to a nearly linear variation of the band-gap energies for the ordered alloys, as illustrated
by the squares in figure 7(b). Also for random alloys, the gap energy is expected to exhibit a
nearly linear variation with the Al fraction. The gap energy of the random alloy configuration
chosen for the optimization ofa andc is increased from 6.08 eV to 6.17 eV, reducing the
bowing to about 0.2 eV.

The results from optical measurements performed for thin AlxGa1−xN films are
summarized in figure 7(a). While the data of Wickenden and co-workers essentially exhibit
a linear variation with the Al fraction [1], a slight downward bowing was observed by Koide
and co-workers [3]. This difference can be partly related to the larger increase of the non-
uniformity in the alloy films, estimated in reference [3] from the larger broadening of the x-ray
rocking curves. The points represented by the triangles in figure 7(a) illustrate the measured
data of reference [5]. They follow a slight upward bowing resulting from the pronounced
decrease of the alloy lattice parameterc reported in reference [5], which is probably related to
the lattice mismatch between the substrate and the alloy film. The observation that a decrease
of the lattice parameters increases the band-gap energy is consistent with our results. However,
our optimization of the lattice parametersa andc yields only a slight decrease ofa andc with
respect to their VCA values. This increases the band-gap energy in a moderate way and hence
only reduces its downward bowing, while a too-small lattice parameter such as is caused by
growth on a non-matching substrate can lead to an upward bowing of the band-gap energy.

In summary, we have performed density-functional local-orbital calculations to study the
structural and electronic properties of wurtzite-phase AlxGa1−xN alloys. The lattice constants
a and c closely follow Vegard’s law. A small downward bowing occurs fora, while it is
negligible forc. The variations of the individual Ga–N and Al–N bond lengths are much smaller
than those of the lattice constants, due to significant bond-angle distortions. Supported by
coherent bond-angle variations, the smallest bond-length changes occur in ordered alloys which
give first-neighbour distances in good agreement with data from recent EXAFS experiments.
Ordering and relaxation of all degrees of freedom, including the dimensions of the unit cell,
also influence the electronic band-gap energy. The linear increase withx as observed by
optical measurements is closely reproduced for fully optimized alloy structures, while not
entirely relaxed structures exhibit a slight downward bowing. The optimization of the lattice
parameters of random alloy structures also reduces the bowing.
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